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ABSTRACT 

As research shows heavy tailedness and tail dependencies are two distinct stochastic prop-

erties of cyber risk. These characteristics change classical diversification results when 

building up portfolios form cyber risks. Our results illustrate the occurrence of and the 

requirements for situations where diversification is suboptimal and insurers will not di-

versify their underwriting cyber portfolios. This situations, also called the diversification 

trap (Ibragimov et al., 2009), has the potential to explain the sluggish development of 

cyber insurance markets and why it lags far behind expectations. Our analysis also gives 

clues about how the diversification trap might be overcome. 

 
 
 

INTRODUCTION 

Cyber risks are characterized by heavy tailed marginal distributions (Maillart and Sornette, 2010; Ed-

wards, Hofmeyr, and Forrest, 2015; Eling and Wirfs, 2016) and potential tail dependencies (Böhme and 

Kataria, 2006; Herath and Herath, 2011; Mukhopadhyay et al., 2013). In such cases diversification of 

risks might not lead to the benefit one typically hopes for. While under the classical expected utility 

optimization and normally distributed risk, utility increases and risk decreases as a portfolio gets more 

diversified (as long as the risks are not perfectly correlated), Ibragimov, Jaffee, and Walden (2009), 

Ibragimov (2004), and Ibragimov and Walden (2007) show that in the presence of heavy tails it can be 

optimal not to diversify at all. Moreover, diversification not only depends on the marginal distributions 
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but also on the dependency structure (Ibragimov and Prokhorov, 2016), i.e. nonlinear (tail) dependen-

cies significantly affect the diversification outcome. From a regulatory point of view the benefit from 

diversification is assessed by risk measures such as value at risk (VaR) or tail value at risk (TVaR). This 

paper empirically shows that heavy tails and tail dependencies in cyber risks cause risk measure to 

increase as the portfolio gets more diversified. Besides risk measures, which are of primary interest for 

regulators, we also consider an expected utility framework which might more appropriately capture the 

incentives and behavior of decision makers in a firm.1 

The remainder of the paper is organized as follows. Firstly, we introduce the models used to analyze 

diversification in the Section “Methodology” and the cyber risk data used in the Section “Data”. Then 

the Section “Results” uses data on cyber risk in order to calibrate the models and our findings are pre-

sented. Finally, we conclude by summarizing and discussing the results and providing recommendations. 

METHODOLOGY 

In order to analyze diversification, we derive a model for portfolio formation that is calibrated using 

cyber losses. We follow Ibragimov et al. (2009) and formulate the loss of a portfolio or a single insurer 

ܺ௦ as the sum of the portfolio’s iid components ܼ௜: 

 ܺ௦ ൌ ݊ିଵ ∑ ܼ௜
௡
௜ୀଵ   (1) 

This model considers an individual insurance company and implies equal weights on each risk ܼ௜ and 

constant “size of the portfolio” as ݊ increases. We use different marginal distribution for ܼ௜. Since in 

our case some distributions are not stable2 we cannot rely on closed form solutions as Ibragimov et al. 

(2009) do. Instead, we simulate samples of the form z ={ࢠଵ,… ,  ௠} where z is a matrix of dimensionࢠ

݊ for the portfolio size and ݉ for the number of simulations (here 10 million). 

In order apply the utility framework, the overall loss is modeled as a degenerated mixture distribution 

combining a Pareto distributed ܼ and a scalar μ (Ibragimov et al., 2009): 

 ෨ܼ௜ ൌ ሺ1ߤ െ ሻܫ ൅ ܫ ∙ ܼ௜, (2) 

where ܫ is Bernoulli distributed meaning it is one with a probability ݍ and 0 with a probability ሺ1 െ   .ሻݍ

ߤ denotes the premium the insurer earns and is calculated as fair premium ߤ ൌ ݍ ∙  ሺܼሻ. The premiumܧ

is thus determined exogenously and not by a model of market equilibrium. Now we expand the consid-

                                                      
1  Research has shown that the standard expected utility framework does not always well describe the behavior of 

people (Benartzi and Thaler, 1995). We thus do not only consider classical models, but also more recent models 
based on prospect theory (see, e.g., Kahneman and Tversky, 1979 and 1992). 

2  If ܼ௜’s distribution is stable, it means that a portfolio of ܼ௜ follows the same distribution up to a linear transfor-

mation. Special cases are the Normal for a Pareto index ߙ ൌ 2, Cauchy for ߙ ൌ 1, and Lévy distribution for 

ߙ ൌ 0.5 (see, e.g., Ibragimov and Walden, 2007). 
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erations to several insurers cooperating in a risk pool. Similar but more general as a reinsurance ar-

rangement, in a risk pool the risk each company takes on is shared with the other pool members. While 

the individual insures face some capacity restriction and the number of risk they can take on is limited, 

it might be that each insurer does not reach the critical underwriting size required to benefit from diver-

sification as will be shown later. However, sharing risk in a pool could help to attain the required diver-

sification. Put differently, business not beneficial from the perspective of a single insurer might be ben-

eficial for several insurers working together. We aggregate the individual risks ෨ܼ௜ for different portfolio 

sizes and denote the overall pool risk as ܺ௣: 

 ܺ௣ ൌ ଵିݏ ∑ ෨ܼ௜
௡
௜ୀଵ ,  (3) 

where ݏ is the number of insurers in the risk pool and ݊ is the number of risks in the risk pool. Note that 

the expected utility framework is not applicable if the first order moments do not exist (Ibragimov and 

Walden, 2007), as is the case for the data we use here (the VaR is the only applicable measure then). 

However, limited liabilities, a rather realistic assumption, solves this problem: 

ሻݔሺݒ  ൌ ൜
ݔ	݂݅				ݔ ൏ ݇
ݔ	݂݅				݇ ൒ ݇.  (4) 

Losses higher than ݇ would lead to a default of the insurer and the claim would not be paid. On the 

truncated portfolio losses, we apply the power utility function: 

ሻݒሺݑ  ൌ  ሻఉ. (5)ݔሺݒ

Since we assume that firms behave risk averse the utility function must be concave and therefore ߚ ∈

ሺ0,1ሻ. Additionally, we also define the utility function based on the VaR as ݑሺܺሻ ൌ ݂ሺܧሺܺሻ, ܸܴܽሺܺሻሻ 

where the derivative with respect to the expectation is ா݂ሺ௑ሻ ൐ 0 and with respect to VaR ௏݂௔ோሺ௑ሻ ൏ 0  

(see Ibragimov et al., 2009). This approach is similar to the classical portfolio approach but instead of 

minimizing the standard deviation while fixing ߤ, the VaR is minimized. However, both approaches 

would produce the same result if the risks were elliptical distributed. 

Finally, the expected utility is approximated by the average of the number of simulations ݉ (i.e. a Monte 

Carlo integration): 

ሻݑሺܧ  ൎ ݉ିଵ ∑ ሻ௠ݒሺݑ
௜ୀଵ . (6) 

The convexity of the utility function for large losses caused by the limited liability assumption is essen-

tial for the U-Shape utility curves and for the occurrence of diversification traps. However, we expect 

that an alternative assumption would do the same job. In this model we are going to replace the expected 

utility and limited liability assumptions by the prospect theory (see, e.g., Kahneman and Tversky, 1979 

and 1992; and for the methodology see Prelec, 1998). We expect that the prospect theory will be able 

to imitate the convexity of the utility function and therefore will produce similar results. This would 

generalize and confirm the robustness of our findings. The aggregated value of the prospect theory 
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model is defined as: 

	

ܸሺݔሻ ൌ ሻ൯ݔሺݒ௪൫ܧ ൌ ሻݔሺݒሻሻݔሺ݌ሺݓ׬ ݔ݀ ൎ
ଵ

ே
∑ ሺݓ൫݌ሺݔ௜ሻ൯ െ ௜ሻݔሺݒ௜ሻሻݔሺ݌
ே
௜ୀଵ , 

the value function is specified as: 

ሻݔሺݒ ൌ ൜
;ఉݔ 	0 ൏ ݔ ൏ ܿ
െߣሺെݔሻఉ; ݔ ൐ ܿ

 , 

and the weighting function is specified as: 

ሻ݌ሺݓ ൌ
௣ം

௣ംାሺሺଵି௣ሻംሻభ/ം
, 

where ݓሺ݌ሻ is the probability weighting function, ߣ the loss aversion, ݌ሺݔሻ the distribution function 

here estimated by the empirical distribution, and ߚ, as before, the risk aversion. The parameters are set 

according to Tversky and Kahneman (1992) to ߣ ,0.88=ߚ ൌ ߛ ,2.25 ൌ 0.61. Moreover we set the ref-

erence point at the expected loss since the insurer would account for the expected value when calculat-

ing the permiums, ܿ ൌ   .ሺܺሻ. Since there is no closed form solution we simulate the modelܧ

Dependent risks might further reduce the benefits of diversification. To model the dependency, we first 

used a Gaussian copula in order to simulate the portfolio distribution and thus assume that the depend-

ency is linear. However, if the marginal distributions are non-normal (or more generally non-elliptical), 

the Person (linear) correlation is not an appropriate dependency measure since it does not capture the 

tail dependency (Embrechts, McNeil, and Straumann, 2002). Moreover, the correlation might not be 

applicable at all since the data suggest that the second order moments do not exist. Instead, we use 

copulas ܥ to derive the joint distribution ܨሺ. ሻ (see, e.g., Wang, 1998): 

,ሺܼଵܨ  … , ܼ௡ሻ ൌ ,ଵሺܼଵሻܨ൫ܥ … ,  ௡ሺܼ௡ሻ൯. (7)ܨ

Different dependency structures are modeled with different copulas and parameters such as the Clayton 

copula (see Ibragimov and Prokhorov, 2016; Embrechts, Lambrigger, and Wüthrich, 2009; Embrechts, 

Nešlehová, and Wüthrich, 2009; Chen, Mao, Pan, and Hu, 2012). For the calibration of the copulas we 

orient ourselves at the empirical analysis conducted by Böhme and Kataria (2006).  
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DATA  

The data considered in the main part of the paper are 1’553 cyber losses between 1995 and 2014 ex-

tracted from the SAS OpRisk database.3 For detailed description of the data we refer to Biener et al. 

(2015) and Eling and Wirfs (2016). In order to analyze which distribution describes the data best we 

compare several goodness-of-fit statistics for several widely used distributions in Table 1 (a broader 

comparison with more distributions is provided in Eling and Wirfs, 2016). 

Table 1 
Goodness-of-Fit 

     

 LogLik AIC BIC KS AD 

Normal -11’619.77 23’243.55 23’254.24 0.46 - 

Lognormal -4’498.01 9’000.03 9’010.72 0.08 17.26 

Generalized Pareto -4’461.65 8’929.30 8’945.35 0.07 7.24 

Peak over threshold (PoT) -4’456.43 8’922.85 8’949.59 0.06 11.05 

Note: LogLik stands for the logarithmic likelihood of the maximum likelihood (ML) estima-
tion, AIC for the Akaike information criterion, BIC for Bayesian information criterion, KS 
for the Kolmogorow-Smirnow test, and AD for the Anderson-Darling test. The POT approach 
slices a lognormal body and a Pareto distribution from the 80% quantile upwards. 

Based on the goodness-of-fit-statistics we find that the generalized Pareto distribution and the POT 

approach fit the data best. The estimated Pareto index for the generalized Pareto distribution is 0.62 and 

for the POT approach it is 0.81.4 We thus can confirm that cyber risks are indeed heavy tailed and the 

expectation and variance do not exist (see, e.g., Neslehová et al., 2006). 

Illustrating the tail dependencies is more difficult because of the lack of data and analyses. Many experts 

claim that cyber risks are correlated, e.g. because all companies are using the same software systems. 

But so far only little empirical evidence exists. A few papers from the IT domain discuss potential 

dependencies between cyber risk (Böhme and Kataria, 2006; Herath and Herath, 2011; Mukhopadhyay 

et al., 2013), but to our knowledge there is no study that empirically analyses the existence of depend-

ence between potential cyber losses, and such a dependence exists, how it looks like. For this reason 

different potential dependency structures will be considered in our empirical part.5 

                                                      
3  In the main body of the text we focus on the 1,553 cyber risk losses which are also considered by Eling and 

Wirfs (2016). As a robustness test we also we analyze in Appendix A a frequently considered data set on data 
breaches (e.g. Maillart and Sornette, 2010; Edwards et al., 2016) provided by the Privacy Rights Clearinghouse 
(PRC, 2017). 

4  The Pareto (or tail) index is the exponent ߙ in ܲሺܼ ൐ ሻݖ ൌ ݄ሺݖሻିݖఈ where ݄ሺݖሻ is a slowly varying function 

(see, e.g., Neslehová et al., 2006). Here we define a distribution with a Pareto parameter ߙ ൏ 2 as heavy tailed 

where the moments of order two and higher do not exists and if ߙ ൏ 1 as extremely heavy tailed where moments 
of order one and higher do not exist (see Ibragimov and Prokhorov, 2016). 

5  Only Böhme and Kataria (2006) consider a data set (the number of potential attacks measured by honeypots), 
but they do not consider loss data and focus on the t-copula to capture potential tail dependencies. Herath and 
Herath (2011) model potential dependencies by Archimedean copulas (Clayton and Gumbel), while Mukho-
padhyay et al. (2013) use Gaussian copula and linear correlations. 
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RESULTS 

First we investigate the effect diversification has on the value at risk (VaR). Figure 1 shows the result 

for the ܸܴܽ଴.ଽଽହሺܺሻ for different marginal distribution assumptions and depending on the degree of 

diversification ݊. 

Figure 1 
Diversification and VaR (independent) 

 
Note: Normal, Lognormal, Pareto, and POT stand for the distribution assumption used for ܼ௜. 

The classical diversification result adapted to VaR is represented by the monotonically decreasing func-

tion of the normally distributed risks. Similarly, the VaR for lognormal risks also decreases but at a 

slower rate. Thus, the lognormal distribution, used in insurance practice and in regulatory models, also 

shows some degree of diversification. 

We also use bootstrapping to simulate the VaR for different portfolio sizes. For the bootstrapping we 

draw directly from our original sample instead of the different distributions assumed above. The sample 

is drawn with replacement and is of equal size as the original data set (m=1’553 observations). Moreover, 

we calculate the confidence interval by repeating the bootstrapping itself. Figure 2 shows the boot-

strapped VaR and its confidence interval. 
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Figure 2 
Diversification and VaR (independent) 

Note: The bootstrapping is based on the empirical distribution of ܼ௜. The dashed lines mark the 
95% confidence interval of the bootstrapped VaR. 

The bootstrapped VaR always lies above the lognormal VaR and the diversification benefit is much less 

prevalent than assumed by regulator. This result would be even more pronounced if the true distribution 

that generated our data is of a Pareto form as estimated above. In this case the VaR would actually 

increase and become superadditive6 as the portfolio gets more diversified. As a consequence, not to 

diversify at all would be optimal from a risk management perspective. Note that the curves do not start 

for one risk at the same VaR. The reason for that is that the distributions are fitted to the data according 

to the maximum likelihood (ML) approach. Therefore, the VaR for one risk does not necessarily be the 

same for different distributions. 

  

                                                      
6  The VaR of iid risk is superadditive (heavy tailed) if the Pareto index is ߙ ൏ 1, additive if ߙ ൌ 1 and subaddi-

tive if  ߙ ൐ 1 (see Neslehová et al. 2006). 
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Since the dependency affects the diversification results, we also simulate the VaR for different depend-

ency structures. Figure 3 plots the VaR again as a function of the portfolio size for identical distributed 

risks and different copulas.7   

Figure 3 
Diversification and VaR (dependent)

 
Note: The identical (lognormal) distributed risk ܼ௜ are aggregated assuming dependencies ac-
cording to the Gauss and Clayton copulas. To compare the result the independent case (iid) is 
also plotted.  

Figure 3 shows the lognormal marginal distributions combined with different dependency models. Since 

the VaR is decreasing for all copulas as the portfolio gets more diversified there is benefit from diver-

sification. However, stronger dependency between the portfolio constituents would cause extreme 

losses to become more likely and the VaR to increases. Moreover, higher dependency in the tail as 

modeled by the Clayton copula increases the VaR even further.8  

  

                                                      
7  The Clayton copula is calibrated to a correlation of 0.2. 
8  Note that the effect diversification has on ܸܴܽ௤ depends on the security level q (see Embrechts, Nešlehová, 

and Wüthrich, 2009). Generally, the lower q the better diversification works for VaR.  
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Figure 4 shows the expected utility based on a power utility function for iid risks (according to Equa-

tions 2-6 but 3 is replaced by 1). 

Figure 4 
Diversification and Expected Utility (independent)

Note: The identical (lognormal) distributed risk ܼ௜ are aggregated assuming dependencies accord-
ing to the Gauss and Clayton copulas. To compare the result the independent case (iid) is also 
plotted.  

As expected, for normal distributed risk we attain the classical result for diversification. However, this 

is not true for heavy tailed distribution such as the Pareto distribution. 
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Figure 5 
Diversification and Expected Utility (dependent)

Note: The identical (lognormal) distributed risk ܼ௜ are aggregated assuming dependencies according 
to the Gauss and Clayton copulas. To compare the result the independent case (iid) is also plotted.  

The result of the analysis described in Equations 2-6 is shown in Figure 6 for different risk in the in-

surer’s portfolio. 

Figure 6 
Diversification and Expected Utility (Pareto Model)

Note: For this analysis we use the following parameters: ݇ ൌ ߤ ,60 ൌ ݍ ,6.6 ൌ ߚ ,15% ൌ 0.0315, 

and ܲܽ݋ݐ݁ݎ	ݔ݁݀݊݅	ሺߙሻ ൌ 1. 
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The figure shows that for risk with a Pareto index of 1 and limited liability, the expected utility for 

different portfolio sizes is U-shaped. Thus the benefit from diversification first decreases before it even-

tually increases again. The question is whether above a critical portfolio size the utility becomes bigger 

than underwriting not cyber risks at all. For three pool members the critical size would be 60 policies. 

Whether the market supplies zero or more than 180 polices is a question of strategic behavior described 

by game theory and whether there exists a reinsurance market. 

The result of the analysis described in Equations 3-7 is shown in Figure 7 for different risk in the in-

surer’s portfolio. 

Figure 7 
Diversification and Expected Utility (Pareto Model)

Note: For this analysis we use the following parameters: ݇ ൌ ߤ ,60 ൌ ݍ ,6.6 ൌ ߚ ,15% ൌ 0.0315, 

and ܲܽ݋ݐ݁ݎ	ݔ݁݀݊݅	ሺߙሻ ൌ 0.62. 

As shown, using a Pareto index of 0.62 (as estimated from the data) changes, ceteris paribus, the result 

completely. Since the expected utility decreases monotonically not providing any insurance would be 

optimal and the market would fail completely. A numerical analysis shows that the U-shape can only 

be observed if the tail index is in the range of (0.8, 1.2) that is similar to the findings of Ibragimov et al. 

(2009) for cat risk. While the situation in Figure 6 leaves room for sovereign intervention, the model in 

Figure 7 does not. 
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Figure 8 shows the same analysis for the POT model that combines the lognormal distribution for the 

body with the Pareto distribution for the tail. 

Figure 8 
Diversification and Expected Utility (POT Model)

 

Note: For this analysis we set a threshold at the 80% quantile, use lognormal for the body and a Pareto 

distribution for the tail. The parameters have been chosen as follows: ݇ ൌ ߤ , 60 ൌ ݍ , 6.6 ൌ ߚ , 15% ൌ
0.0315, and ܲܽ݋ݐ݁ݎ	ݔ݁݀݊݅	ሺߙሻ ൌ 0.81. 

Similar to the Pareto model in Figure 7 the expected utility monotonically decays for all pool sizes as 

the portfolio sizes increases. Therefore, it is not beneficial for insurers to supply any cyber insurance 

and the market fails.  

Results for the prospect theory approach are yet to come. 

CONCLUSIONS 

This analysis shows two important aspects from a regulatory point of view. With respect to VaR, we 

first show that diversification does not work sufficiently well for cyber risks as measured. The regulator 

thus must account for that. For example, since the risk does not decrease with diversification there 

should be no capital discount for diversification. Or the regulator could limit the amount of underwriting 

risks the insurers has in its books. Second, if the market for cyber risk is in a diversification trap ac-

cording to the utility framework, we showed why the market for cyber insurance completely or partially 

fails. As a consequence, idiosyncratic risks cannot be diversified and therefore would be relevant for 

the pricing. The premium charged by insurer increases and might even become prohibitive high and as 
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a consequence the market fails. Market failure must be met by different response of the regulator. The 

regulator might incentivize the use of reinsurance market, risk pools and instruments alike. As there 

seems to be a game theoretical coordination problem, the government could also provide help so that 

the cyber risk market would achieve the critical size needed for harvesting the benefits of diversification. 

The limitation of this paper lays with the quality of available data and whether the data represents cyber 

risk in general well. The availability of better data in the future would open up new research opportunity. 

Moreover, your analysis could be extended by modeling the premium endogenously as the market clear-

ing price.  

In the next version of the paper we are going to analyses what effect model risk has on our diversifica-

tion result and extend the analysis by the prospect theory and the mean-VaR framework. Moreover, we 

will use a numeric approach to analyze how sensitive our result is to different parameter combinations 

(e.g. how strongly can the Pareto index deviate from our estimate so that there is still a U-shaped ex-

pected utility). 

APPENDIX A  

The analysis for the data breaches provided by Privacy Rights Clearinghouse (PRC, 2017) is under constructions. 
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